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Fract ional  relaxation in anelast ic solids 

F r a n c e s c o  M a i n a r d i  
Department of Physics, University of Bologna, 1-40126 Bologna (Italy) 

Abstract 

The ordinary relaxation phenomenon exhibiting a pure exponential decay is generalized by replacing the first 
time derivative by the a-fractional derivative (0 < a,.< 1) in the basic equation. Mathematical aspects are discussed 
with emphasis on the related continuous relaxation spectrum. From the physical point of view the thermoelastic 
coupling in anelastic solids is considered to take into account a temperature fractional relaxation due to diffusion. 
A viscoelastic model, formerly introduced by Caputo and Mainardi, is then recovered which generalizes the 
standard linear solid. 

1. Introduction 

The relaxation process is very common and is found 
in many areas of physics; in particular, it plays a 
fundamental role in the physical interpretation of an- 
elasticity in solids. From the mathematical point of 
view this process is governed by a simple linear dif- 
ferential equation of the first order in time. 

The purpose of  this paper  is to consider, after some 
mathematics, the physical aspects of relaxation in an- 
elastic solids when in the basic equation the first-order 
derivative is replaced by a derivative of fractional order 
a with 0 < a <  1; the generalized process will be referred 
to as fractional relaxation. 

The fractional derivative is an integrodifferential op- 
erator which provides an analytical extension of  the 
ordinary concept of the derivative of integer order. Its 
mathematical treatment is found in the so-called frac- 
tional calculus which is the generalization of the ordinary 
calculus to take into account integration and differ- 
entiation of order not necessarily integer [1]. 

Here  we limit ourselves to consider causal functions, 
i.e. functions of a real variable t vanishing for t<0 .  
For these functions the fractional derivative of order 
a with 0 < a ~< 1 results as 

f(t) = r(1-a) o dr 

1 

0 

(1) 

with 

t - "  t_7_" 
g'(l _.)(t) = V(1 - a--~ @(t) - /-[1 - a) (2) 

where F denotes the gamma function and @ the Heav- 
iside step function. For details we refer to our recent 
report [2]. 

2. The mathematical aspects 

By the relaxation equation we mean the first-order 
differential equation 

du 
--~ +qoU(t)=O with u ( 0 ) = U o > 0  (3) 

where qo> 0 and the field variable u =u( t )  is assumed 
to be differentiable (and therefore continuous) in all 
of R. The solution of (3) 

u(t)=uo exp( -qo t )  (4) 

can be easily obtained using standard methods; the 
constant qo is referred to as the relaxation frequency, 
being the inverse of the relaxation time. 

From the physical point of view the field variable is 
expected to be a causal function of t, i.e. vanishing for 
t < 0  with a possible jump at t =  0, so that it may be 
convenient to introduce the notation 

f(t) = u(t)O(t) with f(0 +) = u(0) = Uo (5) 

As a consequence we rewrite (3) in the form 

df 
-~ + qof(t) = Uo 8(0 (6) 
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where 6(0 denotes the Dirac delta (generalized) func- 
tion. This equation is to be interpreted in the generalized 
sense of the distribution theory. Its solution, obtained 
by the generalized Laplace transform technique, reads 

f ( t )  = Uo exp( - qot)~9(t) (7) 

By replacing the first derivative in (3) and (6) by a 
derivative of order a with 0 < a < l  and taking into 
account (1), we are led to consider the following equa- 
tions for u(t)  (in the ordinary sense) and f ( t )  (in the 
generalized sense): 

1 f ( a u )  dr +q.u(t)= o (8) 
F(1 - a) ~ ( t -  ~-)" 

o 

with u(O)=uo,  and 

& f  +q~(t)=uoClgo_, ,)( t  ) (9) 
dt" 

For dimensional convenience the parameter qo has been 
replaced by q", where q is the generalized relaxation 
frequency. We note that for a =  1 equations (3) and 
(6) are recovered provided that q =qo, recalling that 
qbo(t) = t 7-'/F(0) = 6(0. 

The solution can be obtained by using the (gener- 
alized) Laplace transform technique on (8) or (9). The 
image solution turns out to be, in an obvious notation, 

f t ( s )= f ( s )=Uo  s~-  ~ (10) 
s ~ + q~ 

To invert (10), we can use (see e.g. refs. 2 and 3) the 
expansion theorem or the Bromwich formula; we obtain 

u (t) = uoE,~[ - (qt) a] (11) 

where E,, denotes the Mittag-Leffler function defined 
by [4] 

1 f C - ' e ' 
E.(z)= = F(ak+l) - 27ri ~ d~ (12) 

Ha 

with a>~0, z~C and Ha denoting the Hankel loop• 
From the series representation we recognize that for 
a> O, E.(z) is an entire function, which provides a simple 
generalization of the exponential function. Furthermore, 
for 0 ~< a 4 I, E.(-x) turns out to be completely monotonic 
for x >i O, i.e. 

d ~ 
( -  1) ~ ~-~ E,(-x)>~0 (13) 

This property thus makes E, , ( -x)  a good candidate 
to generalize the pure exponential decay into a more 
general relaxation process introducing the additional 
parameter a in a simple way. In this respect earlier 
applications were given by Davis [5] and Gross [6]. 
Later Caputo and Mainardi [3, 7] and more recently 

several authors, including Koeller [8, 9], have shown 
the relevance of this function when derivatives of real 
order a (0< a <  1) are introduced in the stress-strain 
relation for linear viscoelastic solids. In the next section 
we shall provide for these models an original inter- 
pretation based on the thermoelastic coupling, thus 
extending a classical argument due to Zener [10]. 

Plots of the fractional relaxation function E,~[ - (qt) '~] 
vs.  qt for different values of a appear interesting, overall 
in comparison with the ordinary relaxation function 
exp(-qt) .  At first we can derive the asymptotic be- 
haviour for t ~ 0  ÷ and t ~  o0 respectively from the 
series and integral representation in (12); they read 

(qt) ~ 
1 F ( l + a )  as q t ~ O  + 

E . [ -  (qt)"] = (14) 
(q t ) -  ~ 

F ( 1 -  a - - - - -~  as qt-~ oo 

An explicit expression for the fractional relaxation 
function can be obtained for the intermediate value 
a=0.5, which reads 

E0.5[ - (qt) l/a] = exp(qt) erfc[(qt) 1/2] (15) 

A plot of the function (15) vs. qt is presented in 
Fig. 1 along with its asymptotic expressions (14), in 
comparison with the ordinary relaxation function 
exp(-qt).  With respect to the exponential function the 
fractional relaxation function exhibits for small t a much 
faster decay (its derivative tends to - oo in comparison 
with - 1), but for large t a much slower decay (algebraic 
decay in comparison with exponential decay). 

To conclude the mathematical analysis, we would 
like to point out that, because of the property (13), 
the fractional relaxation function can be expressed in 

0.8 
i , \ 
i'| "- \ 

0.6 I i ~ ' , ,  x \  

0.4- I \ - ~ . ~ . ~  , 

0.2 ~ \ 
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Fig. 1. Comparison between the fract ional  relaxat ion funct ion 
Eo.5[-(qt) u2] given by (15) (continuous curve) and the ordinary 
relaxation function exp(-q t )  (dotted curve) vs. qt. The asymptotic 
expressions of (15) are also reported (dashed curve). 
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terms of a relaxation distribution function or relaxation 
spectrum ~(~; a, q), i.e. 

oo 

0 

In order to obtain this spectrum, we can adopt the 
general method of Gross [6] involving Stieltjes transform 
(see e~g. ref. 3) or we can directly use the integral 
representation in (12) [2]. We get 

1 sin(~ra) (17) 
~'r; a, q)= ~"---z (qr)"+ (qz)-"+ 2 eos(Tra) 

A plot of this spectrum, scaled with q, vs. qr is shown 
in Fig. 2 for several values of a. We recognize that 
the spectrum is a decreasing function ofqr  for 0 < a < a . ,  
where a .  =0.736 is the solution of the transcendental 
equation a = sin(a~'); then, with increasing a, it exhibits 
a minimum and a maximum before tending to the 
impulsive function 8(q~'-l)  as a-~ 1. 

3. The physical aspects 

According to Zener [10], the physical interpretation 
of anelasticity in metals is linked to a spectrum of 
relaxation phenomena. In particular, the thermal re- 
laxation due to diffusion in the thermoelastic coupling 
is essential to derive the standard constitutive equation 
(stress-strain relation) in linear viscoelasticity. This 
equation corresponds to a simple rheological model 
(with three independent parameters) known as the 
standard linear solid (SLS); it reads 

o ' +  % ~ -  % 

where ~= a(t) and E= e(t) denote the uniaxial stress 
and strain respectively. The three parameters are Mr, 
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Fig. 2. Plot of the relaxation spectrum (17) of the fractional 
relaxation function (11), scaled with q, vs. q~" for various values 
of a: (a) 0.9; (b) 0.8; (c) 0.7; (d) 0.6; (e) 0.5. 

which represents the relaxed modulus, and r~ and %, 
which denote the relaxation times under constant stress 
and strain respectively; an additional parameter is the 
unrelaxed modulus M, given by ~'~,/%=MuMr> 1. 

Following Zener, the model equation (18) can be 
derived from the basic equations of the thermoelastic 
coupling provided that ~-= and % also represent the 
relaxation times for temperature relaxation at constant 
stress and strain respectively and Mr and M, represent 
the isothermal and adiabatic moduli respectively. De- 
noting by AT the deviation of the temperature from 
its standard value, the two basic equations of ther- 
moelasticity are 

1 
E= ~ or+ AAT (19) 

de d AT= _ 1  A T -  3' ~-~ (20) 
dt ~-. 

where A is the linear thermal expansion coefficient and 
y=(OT/Oe)adl,b. Equation (20) results from the com- 
bination of the two basic phenomena which induce 
temperature changes, (a) relaxation due to diffusion 

( d A T )  = - - - I A T  (21) 
dif f  '7", 

and (b) adiabatic strain change 

0,  
A T  -- - T ¥ (22) 

a d i a b  

Putting 1 + AT = r~/% =M~/M~ and eliminating AT be- 
tween (19) and (20), the relation (18) is readily obtained. 
In this way the temperature plays the role of a hidden 
variable. 

If now we assume that the relaxation due to diffusion 
is governed by the fractional differential equation 

( d ~ )  1 
AT = AT, 0 < a < l  (23) 

d,f, ÷d 

where ?, is a suitable relaxation time, we allow for a 
natural generalization of the simple process of relax- 
ation, which now depends on the parameter a. As a 
consequence, equation (20) turns out to be modified 
into 

d '~ 1 d"e 
dr---- ~ AT= - ?---~ A T - T  dt" (24) 

and, mutatis mutandis, the stress-strain relation turns 
out to be 

d~tr = M r ( e +  $,7 d'~e] (25) 

where we have used 1 + AT= (~/~,)~ =MJMr. By varying 
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Fig. 3. Plot of the loss tangent (27)-(29) (with/3 = 1), scaled with 
A/2, vs. logm(to~) for various values of a: (a) 1; (b) 0.75; (c) 0.5; 
(d) 0.25. 
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Fig. 4. Plot of the loss tangent (27)-(29) (with/3 = 1), scaled with 
its maximum, vs. logm(o~) for various values of a: (a) 1; (b) 
0.75; (c) 0.5; (d) 0.25. 
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a, the relation (25) provides a class of rheological 
models which exhibit, at constant strain E(t)= CoO(t), 
the stress relaxation law 

Equation (25) was first introduced by Caputo and 
Mainardi [7] as an empirical model to fit data on 
internal friction vs. frequency. 

As a measure of internal friction we take the loss 
tangent, i.e. the tangent of the angle 8 by which strain 
lags behind stress under sinusoidal excitation of radian 
frequency to. It results as 

tan 8= A (to-?)" sin(aqr/2) (27) 
1 + (to-?)="+ 2/3(aft)" cos(art/2) 

where 

77 + ~,~ (29) -?= (-?~+,)1/2, /3- 2-?------g~ 

When the loss tangent is plotted against the logarithm 
of to.?, it is seen to be a symmetrical function around 
the maximum attained at aft= 1. It reduces to the 
classical Debye peak when a =  1. Because of the low 
experimental values of A, it is permissible to put/3 = 1 
in (27)-(29), so that the maximum of the loss tangent 
turns out to be 

A sin(art/2) 
(tan 6)m,x-- 2 1 + COS(aTr/2) (30) 

For fixed A the peak decreases in amplitude and 
broadens at a rate depending on a, as shown in Fig. 
3. For the sake of convenience, in view of applications 
to experimental data, in Fig. 4 we report the normalized 
loss tangent obtained when the maximum amplitude 
is kept constant. 

4. Conclusions 

We have shown how the fractional calculus can be 
used in generalizing the physical law of thermal re- 
laxation in anelastic solids to yield the so-called frac- 
tional relaxation of order a with 0 < a ~< 1. The resulting 
effect is to introduce a class of intermediate rheological 
models depending on a, which range from the limiting 
elastic model (a=0)  to the classical SLS (a=  1). The 
mechanical relaxation properties are readily expressed 
by a Mittag-Leffler function in terms of a continuous 
spectrum of relaxation times. The internal friction vs. 
driving frequency turns out to be broader than the 
Debye peak exhibited by the SLS, with a rate depending 
on a. 

We hope that these models can be successfully 
adopted to interpret experimental data on relaxation 
and internal friction in materials of novel physical 
interest. 
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